Notes on Labor Share, Concentration, Markup Investment, Intangibles

Vũ T. Châu
Harvard University

May 7, 2019
Outline

- Declining Labor Share
- Markup and Concentration
 - de Loecker and Eeckhout (2018), Gutierrez and Philippon (2018)
- Intangible Capital
 - Crouzet and Eberly (2019)
Labor Share
Cost-minimization:

\[
C(r, w, Y) \equiv \min_{K,L} \{wL + rK\} \quad \text{s.t.} \quad F(K, L) \geq Y
\]

First-order condition:

\[
r = \lambda F_K, \quad w = \lambda F_L
\]

Note: The Lagrange multiplier is marginal cost:

\[
\lambda = \frac{\partial C}{\partial Y} = MC \quad \text{(Envelope Theorem)}.
\]

Labor share:

\[
sl \equiv \frac{wL}{pY} = \frac{\lambda F_LL}{pY} = \frac{\lambda}{p} \frac{F_LL}{Y} = \frac{1}{\mu} \frac{F_LL}{Y}
\]

For Cobb-Douglas: \(F_LL/Y = (1 - \alpha)\), so \(sl = (1 - \alpha)/\mu\) (constant).
Elasticity of substitution

If the production function is CES:

\[Y = F(K, L) = \left[(A_K K)^{1 - \frac{1}{\sigma}} + (A_L L)^{1 - \frac{1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}} \]

Optimal factors demand:

\[\ln \frac{rK}{wL} = (1 - \sigma) \ln \frac{\tilde{r}}{\tilde{w}} \]

where \(\tilde{r} \equiv r/A_K \), \(\tilde{w} \equiv w/A_L \).

Elasticity:

\[\frac{d \ln \left(\frac{rK}{(wL)} \right)}{d \ln \left(\frac{\tilde{r}}{\tilde{w}} \right)} = 1 - \sigma \]

Suppose capital got relatively cheaper (\(\tilde{r}/\tilde{w} \downarrow \)). The labor share would decline (\(rK/(wL) \uparrow \)) if and only if \(\sigma > 1 \).

- Note: \(\frac{rK}{wL} = \frac{rK/(pY)}{wL/(pY)} = \frac{s_K}{s_L} \). We have \(s_K + s_L + s_{\Pi} = 1 \). To make the argument that \(s_K/s_L \uparrow \) implies \(s_L \downarrow \), implicitly assumed constant \(s_{\Pi} \). (True under monopolistic competition.)
Is $\sigma > 1$?

- Antras (2004): $\sigma \in [0.5, 0.9]$, even when controlling for biased technological change.
- Oberfield and Raval (2018, WP): $\sigma \approx 0.7$ for manufacturing.
 - Estimate plant-level elasticity:
 \[
 \ln \frac{rK_{ni}}{wL_{ni}} = (\sigma_n - 1) \ln w_{ni}^{MSA} + \text{controls} + \varepsilon_{ni}
 \]
 - Assume r roughly constant across MSA (capital is perfectly mobile).
 - Potential endogeneity: A_L/A_K correlates with w at MSA level → solve by Bartik instruments.
 - Aggregating plant-level elasticities:
 \[
 \sigma^{AGG} = (1 - \chi)\sigma + \chi\varepsilon, \quad \chi \equiv \sum \frac{(\alpha_i - \alpha)^2}{\alpha(1 - \alpha)} \theta_i
 \]
Karabarbounis and Neiman (2014)

- Identify σ from variation of relative price of investment goods (ξ) in the cross-section of countries:

$$\frac{s_{L,j}}{1 - s_{L,j}} \hat{s}_{L,j} = \gamma + (\sigma - 1) \hat{\xi}_j + u_i$$

- ξ influences the rental rate of capital R: $\hat{\xi} = \hat{R}$.

<table>
<thead>
<tr>
<th>s_L Data</th>
<th>ξ Data</th>
<th>$\hat{\sigma}$</th>
<th>S.E.</th>
<th>90% CI</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN Merged</td>
<td>PWT</td>
<td>1.25</td>
<td>0.08</td>
<td>[1.11,1.38]</td>
<td>58</td>
</tr>
<tr>
<td>KN Merged</td>
<td>WDI</td>
<td>1.29</td>
<td>0.07</td>
<td>[1.18,1.41]</td>
<td>54</td>
</tr>
<tr>
<td>OECD/UN</td>
<td>PWT</td>
<td>1.20</td>
<td>0.08</td>
<td>[1.06,1.34]</td>
<td>50</td>
</tr>
<tr>
<td>OECD/UN</td>
<td>WDI</td>
<td>1.31</td>
<td>0.06</td>
<td>[1.20,1.42]</td>
<td>47</td>
</tr>
<tr>
<td>KLEMS 1</td>
<td>KLEMS</td>
<td>1.17</td>
<td>0.06</td>
<td>[1.06,1.27]</td>
<td>129</td>
</tr>
<tr>
<td>KLEMS 2</td>
<td>KLEMS</td>
<td>1.49</td>
<td>0.13</td>
<td>[1.28,1.70]</td>
<td>129</td>
</tr>
</tbody>
</table>
The rise of “superstar firms” and rising concentration.

Sectors with highest rise in concentration see largest decline in labor share.

Aggregate decline in labor share mostly due to re-allocation between firms, not a general decline within.

Organizing framework: model with fixed overhead labor

\[s_L = \frac{1}{\mu} \frac{F_L L}{Y} + \frac{wF}{p_i Y_i} = \frac{1 - \alpha}{\mu} + \frac{wF}{p_i Y_i} \]

A superstar firm can have lower \(s_L \) because it has:

- higher markup \(\mu \).
- higher productivity \(A_i \rightarrow high p_i Y_i \rightarrow lower \frac{F}{(p_i Y_i)} \).
Detour: Measuring Concentration

- Measure 1: Herfindahl - Hirschman Index (HHI)

\[
HHI \equiv \sum_i s_i^2
\]

where \(s_i = \frac{\text{sale}_i}{\sum_j \text{sale}_j} \) is the sale share of firm \(i \).

- Value between 0 to 1 (or 0 to 10000, if share = 1 for 1%)
- \(HHI = 1 \) corresponds to monopoly. \(HHI \approx 0 \) corresponds to perfect competition.

- Often correlates with HHI, but not always.
- Statistics readily available on Census’ website.
Detour: Concentration and Data Availability

- Using Census data vs. Compustat:
 - Census has universe of firms. Compustat only publicly listed firms.
 - Census only provides HHI for manufacturing (last time I check), problematic if you do not have firm-level data.
 - Census only available for census years (1997, 2002, 2007 etc.)
 - So it depends on at which frequency you want to run your analysis.
Autor et al. (2017): Rising Concentration

Figure A.1: Average Herfindahl-Hirschman Index by Sector
Autor et al. (2017): Aggregate decline caused by reallocation

Table A.2: Regressions of the Components of the Change in the Payroll-to-Sales Ratio on the Change in Concentration

<table>
<thead>
<tr>
<th></th>
<th>CR4</th>
<th>CR20</th>
<th>HHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Between</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>-0.039 *</td>
<td>-0.072 **</td>
<td>-0.044</td>
</tr>
<tr>
<td>Wholesale</td>
<td>-0.01</td>
<td>-0.025 *</td>
<td>-0.029</td>
</tr>
<tr>
<td>Services</td>
<td>-0.165 **</td>
<td>-0.161 **</td>
<td>-0.491 **</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>-0.082 **</td>
<td>-0.104 **</td>
<td>-0.104 *</td>
</tr>
<tr>
<td>Utilities/Transportation</td>
<td>-0.128 **</td>
<td>-0.12 *</td>
<td>-0.453 **</td>
</tr>
<tr>
<td>Finance</td>
<td>-0.262 *</td>
<td>-0.263 *</td>
<td>-0.546 *</td>
</tr>
<tr>
<td>Combined</td>
<td>-0.086 **</td>
<td>-0.096 **</td>
<td>-0.136 **</td>
</tr>
</tbody>
</table>

\[
S = \sum_i \omega_i S_i = \bar{S} + \sum_i (\omega_i - \bar{\omega})(S_i - \bar{S})
\]

\[
\Delta S = \Delta \bar{S} + \Delta \left[\sum_i (\omega_i - \bar{\omega})(S_i - \bar{S}) \right]
\]

\[
\text{within} \quad \Delta \]

\[
\text{between}
\]
Markup
Recall FOC from cost-minimization for any variable input:

\[P_{it}^V = \lambda_{it} \frac{\partial Y_{it}}{\partial V_{it}} \Rightarrow \frac{P_{it}^V V_{it}}{P_{it} Y_{it}} = \frac{\lambda_{it}}{P_{it}} \frac{\partial Y_{it}}{\partial V_{it}} \frac{V_{it}}{Y_{it}} = \frac{1}{\mu_{it}} \equiv \theta_{it}^V \]

Thus, markup is given by:

\[\mu_{it} = \frac{\theta_{it}^V}{s_{it}^V} \]

Estimate \(\theta_{it} \) a la Olley - Pakes (1996)
Calculate \(s_{it}^V \) using Compustat’s Cost of Goods Sold (COGS).
Controversial
Investment has been weak despite high Q.

Potential explanations:

- Financial frictions: external finance, bank dependence
- Measurement errors: intangibles, globalization
- Lack of competition: regulation, concentration due to other factors
- Tighter governance: ownership and shareholder activism.

Find evidence in support of declining competition hypothesis.
Figure 3: Two Measures of Q
Gutierrez and Philippon (2018): Business Dynamism

Establishment entry and exit rates (Census)
Table 5: Summary of Firm- and Industry-level results

<table>
<thead>
<tr>
<th>Potential explanation</th>
<th>Relevant data field(s)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Industry</td>
</tr>
<tr>
<td>Financial constraints</td>
<td>1. External finance</td>
<td>RZ external finance dependence ('99)</td>
</tr>
<tr>
<td></td>
<td>2. Bank dependence</td>
<td>Missing S&P rating ('99)</td>
</tr>
<tr>
<td></td>
<td>3. Safe asset</td>
<td>Industry spread ('99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firm-level ratings ('99)</td>
</tr>
<tr>
<td>Measurement error</td>
<td>4. Intangibles</td>
<td>Intangibles ex. goodwill/assets</td>
</tr>
<tr>
<td></td>
<td>5. Globalization</td>
<td>% foreign profits</td>
</tr>
<tr>
<td></td>
<td>6. Regulation & uncertainty</td>
<td>Regulation index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occupational Licensing</td>
</tr>
<tr>
<td></td>
<td>Competition</td>
<td>ΔLog # of firms</td>
</tr>
<tr>
<td></td>
<td>7. Concentration</td>
<td>% sales/market value of top X firms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lerner index (Compustat)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herfindahl (Compustat)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Herfindahl (Compustat)</td>
</tr>
<tr>
<td>Governance</td>
<td>8. Ownership</td>
<td>Share of Institutional ownership</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Share of QIX ownership</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Share of DED ownership</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Share of TRA ownership</td>
</tr>
</tbody>
</table>